Correcting Errors in Color Image Encryption Algorithm Based on Fault Tolerance Technique

Author:

Mohamed Heba G.ORCID,Alrowais FadwaORCID,ElKamchouchi Dalia H.

Abstract

Security standards have been raised through modern multimedia communications technology, which allows for enormous progress in security. Modern multimedia communication technologies are concerned with fault tolerance technique and information security. As a primary method, there is widespread use of image encryption to protect image information security. Over the past few years, image encryption has paid more attention to combining DNA technologies in order to increase security. The objective here is to provide a new method for correcting color image encryption errors due to the uncertainty of DNA computing by using the fractional order hyperchaotic Lorenz system. To increase randomness, the proposed cryptosystem is applied to the three plain image channels: Red, Green, and Blue. Several methods were compared including the following: entropy, correlation, key sensitivity, key space, data loss attacks, speed computation, Number of Pixel changing rate (NPCR), and Unified Average Change Intensity randomness (UACI) tests. Consequently, the proposed scheme is very secure against a variety of cryptographic attacks.

Funder

Princess Nourah bint Abdulrahman University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference52 articles.

1. A Novel Image Encryption Scheme Based on 2D Fractional Chaotic Map, DWT and 4D Hyper-chaos

2. Chaotic medical image encryption based on Arnold transformation and pseudorandomly enhanced logistic map;Dagadu;Structure,2017

3. Color image compression and encryption scheme based on compressive sensing and double random encryption strategy

4. Image encryption and sharing based on Arnold transform;Hou;J. Comput. Appl.,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3