Abstract
Analog electronic circuits play an essential role in many industrial applications and control systems. The traditional way of diagnosing failures in such circuits can be an inaccurate and time-consuming process; therefore, it can affect the industrial outcome negatively. In this paper, an intelligent fault diagnosis and identification approach for analog electronic circuits is proposed and investigated. The proposed method relies on a simple statistical analysis approach of the frequency response of the analog circuit and a simple rule-based fuzzy logic classification model to detect and identify the faulty component in the circuit. The proposed approach is tested and evaluated using a commonly used low-pass filter circuit. The test result of the presented approach shows that it can identify the fault and detect the faulty component in the circuit with an average of 98% F-score accuracy. The proposed approach shows comparable performance to more intricate related works.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献