Geometric Simplifications of Natural Caves in Ray-Tracing-Based Propagation Modelling

Author:

Novak RomanORCID,Hrovat AndrejORCID,Bedford Michael D.ORCID,Javornik TomažORCID

Abstract

Natural caves show some similarities to human-made tunnels, which have previously been the subject of radio-frequency propagation modelling using deterministic ray-tracing techniques. Since natural caves are non-uniform because of their inherent concavity and irregular limestone formations, detailed 3D models contain a large number of small facets, which can have a detrimental impact on the ray-tracing computational complexity as well as on the modelling accuracy. Here, we analyse the performance of ray tracing in repeatedly simplified 3D descriptions of two caves in the UK, i.e., Kingsdale Master Cave (KMC) Roof Tunnel and Skirwith Cave. The trade-off between the size of the reflection surface and the modelling accuracy is examined. Further, by reducing the number of facets, simulation time can be reduced significantly. Two simplification methods from computer graphics were applied: Vertex Clustering and Quadric Edge Collapse. We compare the ray-tracing results to the experimental measurements and to the channel modelling based on the modal theory. We show Edge Collapse to be better suited for the task than Vertex Clustering, with larger simplifications being possible before the passage becomes entirely blocked. The use of model simplification is predominantly justified by the computational time gains, with the acceptable simplified geometries roughly halving the execution time given the laser scanning resolution of 10 cm.

Funder

Slovenian Research Agency

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3