Fabrication of NIS and SIS Nanojunctions with Aluminum Electrodes and Studies of Magnetic Field Influence on IV Curves

Author:

Tarasov MikhailORCID,Gunbina Aleksandra,Fominsky MikhailORCID,Chekushkin Artem,Vdovin VyacheslavORCID,Koshelets ValeryORCID,Sohina Elizaveta,Kalaboukhov AlexeiORCID,Edelman Valerian

Abstract

Samples of superconductor–insulator–superconductor (SIS) and normal metal–insulator–superconductor (NIS) junctions with superconducting aluminum of different thickness were fabricated and experimentally studied, starting from conventional shadow evaporation with a suspended resist bridge. We also developed alternative fabrication by magnetron sputtering with two-step direct e-beam patterning. We compared Al film grain size, surface roughness, resistivity deposited by thermal evaporation and magnetron sputtering. The best-quality NIS junctions with large superconducting electrodes approached a resistance R(0)/R(V2Δ) factor ratio of 1000 at 0.3 K and over 10,000 at 0.1 K. At 0.1 K, R(0) was determined completely by the Andreev current. The contribution of the single-electron current dominated at V > VΔ/2. The single-electron resistance extrapolated to V = 0 exceeded the resistance R(V2Δ) by 3 × 109. We measured the influence of the magnetic field on NIS junctions and described the mechanism of additional conductivity due to induced Abrikosov vortices. The modified shape of the SINIS bolometer IV curve was explained by Joule overheating via NIN (normal metal–insulator–normal metal) channels.

Funder

Russian Ministry of Science and Higher Education

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Electrical and thermal transport through α−T3 NIS junction;Journal of Physics: Condensed Matter;2022-12-29

2. Electron-Phonon Interaction in Aluminum SINIS;IEEE Transactions on Applied Superconductivity;2022-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3