Mapping Discrete Emotions in the Dimensional Space: An Acoustic Approach

Author:

Trnka MariánORCID,Darjaa Sakhia,Ritomský Marian,Sabo Róbert,Rusko Milan,Schaper Meilin,Stelkens-Kobsch Tim H.

Abstract

A frequently used procedure to examine the relationship between categorical and dimensional descriptions of emotions is to ask subjects to place verbal expressions representing emotions in a continuous multidimensional emotional space. This work chooses a different approach. It aims at creating a system predicting the values of Activation and Valence (AV) directly from the sound of emotional speech utterances without the use of its semantic content or any other additional information. The system uses X-vectors to represent sound characteristics of the utterance and Support Vector Regressor for the estimation the AV values. The system is trained on a pool of three publicly available databases with dimensional annotation of emotions. The quality of regression is evaluated on the test sets of the same databases. Mapping of categorical emotions to the dimensional space is tested on another pool of eight categorically annotated databases. The aim of the work was to test whether in each unseen database the predicted values of Valence and Activation will place emotion-tagged utterances in the AV space in accordance with expectations based on Russell’s circumplex model of affective space. Due to the great variability of speech data, clusters of emotions create overlapping clouds. Their average location can be represented by centroids. A hypothesis on the position of these centroids is formulated and evaluated. The system’s ability to separate the emotions is evaluated by measuring the distance of the centroids. It can be concluded that the system works as expected and the positions of the clusters follow the hypothesized rules. Although the variance in individual measurements is still very high and the overlap of emotion clusters is large, it can be stated that the AV coordinates predicted by the system lead to an observable separation of the emotions in accordance with the hypothesis. Knowledge from training databases can therefore be used to predict AV coordinates of unseen data of various origins. This could be used to detect high levels of stress or depression. With the appearance of more dimensionally annotated training data, the systems predicting emotional dimensions from speech sound will become more robust and usable in practical applications in call-centers, avatars, robots, information-providing systems, security applications, and the like.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research on Emotion Prediction Based on Emotional Changes in Dialogue Scenarios;2024 36th Chinese Control and Decision Conference (CCDC);2024-05-25

2. The Potential Impact of VR Classroom Style on Learning Efficacy;2024 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW);2024-03-16

3. Affective state estimation based on Russell’s model and physiological measurements;Scientific Reports;2023-06-16

4. Towards the Creation of Tools for Automatic Quality of Experience Evaluation with Focus on Interactive Virtual Environments;Proceedings of the 2023 ACM International Conference on Interactive Media Experiences;2023-06-12

5. Towards the Creation of Scalable Tools for automatic Quality of Experience Evaluation and a Multi-Purpose Dataset for Affective Computing;Proceedings of the 2023 ACM International Conference on Interactive Media Experiences;2023-06-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3