Pre-Processing Filter Reflecting Human Visual Perception to Improve Saliency Detection Performance

Author:

Lee KyungjunORCID,Wee SeungwooORCID,Jeong JechangORCID

Abstract

Salient object detection is a method of finding an object within an image that a person determines to be important and is expected to focus on. Various features are used to compute the visual saliency, and in general, the color and luminance of the scene are widely used among the spatial features. However, humans perceive the same color and luminance differently depending on the influence of the surrounding environment. As the human visual system (HVS) operates through a very complex mechanism, both neurobiological and psychological aspects must be considered for the accurate detection of salient objects. To reflect this characteristic in the saliency detection process, we have proposed two pre-processing methods to apply to the input image. First, we applied a bilateral filter to improve the segmentation results by smoothing the image so that only the overall context of the image remains while preserving the important borders of the image. Second, although the amount of light is the same, it can be perceived with a difference in the brightness owing to the influence of the surrounding environment. Therefore, we applied oriented difference-of-Gaussians (ODOG) and locally normalized ODOG (LODOG) filters that adjust the input image by predicting the brightness as perceived by humans. Experiments on five public benchmark datasets for which ground truth exists show that our proposed method further improves the performance of previous state-of-the-art methods.

Funder

Ministry of Trade, Industry and Energy

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference61 articles.

1. Visual Saliency Computation: A Machine Learning Perspective;Li,2014

2. The Synaptic Organization of the Brain;Shepherd,2004

3. Biophysics of Computation: Information Processing in Single Neurons;Koch,2004

4. The Brain's Dark Energy

5. State-of-the-Art in Visual Attention Modeling

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Signage Detection Based on Adaptive SIFT;Intelligent Data Engineering and Analytics;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3