Trajectory Tracking Control for Intelligent Vehicles Based on Cut-In Behavior Prediction

Author:

Chen ChongpuORCID,Guo Jianhua,Guo Chong,Li Xiaohan,Chen Chaoyi

Abstract

For intelligent vehicles, trajectory tracking control is of vital importance. However, due to the cut-in possibility of adjacent vehicles, trajectory planning of intelligent vehicles is challenging. Therefore, this paper proposes a trajectory tracking control method based on cut-in behavior prediction. A method of cut-in intention recognition is adopted to judge the possibility of adjacent vehicle and the driver preview model is used to predict the trajectory of the cut-in vehicle. The three driving scenarios are divided to manage trajectory planning under different cut-in behaviors. At the same time, the safety distance model is established as the basis for scene conversion. Taking the predicted trajectory of the cut-in vehicle as a reference, the model predictive control (MPC) method is used to plan and control the driving trajectory of the subject vehicle, so as to realize the coordinated control of the subject vehicle and the cut-in vehicle. Finally, the simulation shows that the subject vehicle can effectively recognize the cut-in intention of the adjacent vehicle and predict its trajectory. Facing with the cut-in vehicle, the subject vehicle can take appropriate control actions in advance to ensure the safety. Finally, a smoother coordinate control process is obtained between the subject vehicle and the cut-in vehicle.

Funder

the Science and Technology Planning Project of Tianjin, China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Trajectory Prediction for Autonomous Driving Based on Structural Informer Method;IEEE Transactions on Automation Science and Engineering;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3