A Method for High-Value Driving Demonstration Data Generation Based on One-Dimensional Deep Convolutional Generative Adversarial Networks

Author:

Wu YukunORCID,Wu Xuncheng,Qiu Siyuan,Xiang WenbinORCID

Abstract

As a promising sequential decision-making algorithm, deep reinforcement learning (RL) has been applied in many fields. However, the related methods often demand a large amount of time before they can achieve acceptable performance. While learning from demonstration has greatly improved reinforcement learning efficiency, it poses some challenges. In the past, it has required collecting demonstration data from controllers (either human or controller). However, demonstration data are not always available in some sparse reward tasks. Most importantly, there exist unknown differences between agents and human experts in observing the environment. This means that not all of the human expert’s demonstration data conform to a Markov decision process (MDP). In this paper, a method of reinforcement learning from generated data (RLfGD) is presented, and consists of a generative model and a learning model. The generative model introduces a method to generate the demonstration data with a one-dimensional deep convolutional generative adversarial network. The learning model applies the demonstration data to the reinforcement learning process to greatly improve the effectiveness of training. Two complex traffic scenarios were tested to evaluate the proposed algorithm. The experimental results demonstrate that RLfGD is capable of obtaining higher scores more quickly than DDQN in both of two complex traffic scenarios. The performance of reinforcement learning algorithms can be greatly improved with this approach to sparse reward problems.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3