FIRN: A Novel Fish Individual Recognition Method with Accurate Detection and Attention Mechanism

Author:

Gao Chunqi,Wu Junfeng,Yu Hong,Yin Jianhao,Guo Shihao

Abstract

Fish individual recognition technology is one of the key technologies to realize automated farming. Aiming at the deficiencies in the existing animal individual recognition technology, this paper proposes a method for individual recognition of underwater fish based on deep learning technology, which is divided into two parts: fish individual object detection and fish individual recognition. In the object detection part, the research has improved a new object detection for underwater fish based on the YOLOv4 algorithm, which changed the feature extraction network in YOLOv4 from CSP Darknet53 to Mobilenetv3 and changed the 3 × 3 convolution in the enhanced feature extraction network PANet to depthwise separable convolution. Compared with the original YOLOv4, the mean average precision is improved by 1.97%. For individual recognition, an algorithm called FIRN (Fish Individual Recognition Network) for individual recognition of underwater fish is proposed. The feature extraction network of the algorithm uses the improved ResNext50, and the loss function uses Arcface Loss. The CBAM attention module is introduced in the residual block of ResNext50, the max-pooling layer in the trunk is removed, and dilated convolution is introduced in the residual block, which increases the receptive field and improves the ability of feature extraction. Experiments show that the FIEN algorithm can enhance the compactness within a class while ensuring the separability between classes, and has a better recognition effect than other algorithms.

Funder

the Key Research Projects in Liaoning Province

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference46 articles.

1. Current Situation and Prospects of Aquaculture Development in China;Mang;Fish. Mod.,2022

2. Estimation for fish mass using image analysis and neural network

3. Automatic recognition methods of fish feeding behavior in aquaculture: A review

4. Recognition of freshwater fish species based on bee colony optimization multi kernel support vector machine;Wu;Trans. Chin. Soc. Agric. Eng.,2014

5. Design of online recognition device for freshwater fish species based on machine vision technology;Wan;Food Mach.,2012

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3