A Vision-Based Bio-Inspired Reinforcement Learning Algorithms for Manipulator Obstacle Avoidance

Author:

Singh AbhilashaORCID,Shakeel Mohamed,Kalaichelvi V.ORCID,Karthikeyan R.ORCID

Abstract

Path planning for robotic manipulators has proven to be a challenging issue in industrial applications. Despite providing precise waypoints, the traditional path planning algorithm requires a predefined map and is ineffective in complex, unknown environments. Reinforcement learning techniques can be used in cases where there is a no environmental map. For vision-based path planning and obstacle avoidance in assembly line operations, this study introduces various Reinforcement Learning (RL) algorithms based on discrete state-action space, such as Q-Learning, Deep Q Network (DQN), State-Action-Reward- State-Action (SARSA), and Double Deep Q Network (DDQN). By positioning the camera in an eye-to-hand position, this work used color-based segmentation to identify the locations of obstacles, start, and goal points. The homogeneous transformation technique was used to further convert the pixel values into robot coordinates. Furthermore, by adjusting the number of episodes, steps per episode, learning rate, and discount factor, a performance study of several RL algorithms was carried out. To further tune the training hyperparameters, genetic algorithms (GA) and particle swarm optimization (PSO) were employed. The length of the path travelled, the average reward, the average number of steps, and the time required to reach the objective point were all measured and compared for each of the test cases. Finally, the suggested methodology was evaluated using a live camera that recorded the robot workspace in real-time. The ideal path was then drawn using a TAL BRABO 5 DOF manipulator. It was concluded that waypoints obtained via Double DQN showed an improved performance and were able to avoid the obstacles and reach the goal point smoothly and efficiently.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference38 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3