Trajectory Recovery Based on Interval Forward–Backward Propagation Algorithm Fusing Multi-Source Information

Author:

Zhou BiaoORCID,Wang Xiuwei,Zhou Junhao,Jing ChangqiangORCID

Abstract

In the tracking scheme in which global navigation satellite system (GNSS) measurement is temporally lost or the sampling frequency is insufficient, dead reckoning based on the inertial measurement unit (IMU) and other location-related information can be fused as a supplement for real-time trajectory recovery. The tracking scheme based on interval analysis outputs interval results containing the ground truth, which gives it the advantage of convenience in multi-source information fusion. In this paper, a trajectory-recovery algorithm based on interval analysis is proposed, which can conveniently fuse GNSS measurement, IMU data, and map constraints and then output an interval result containing the actual trajectory. In essence, the location-related information such as satellite measurement, inertial data, and map constraints is collected by practical experiments and then converted into interval form. Thereby, the interval-overlapping calculation is performed through forward and backward propagation to accomplish the trajectory recovery. The practical experimental results show that the trajectory recovery accuracy based on the proposed algorithm performs better than the traditional Kalman filter algorithm, and the estimated interval results deterministically contain the actual trajectory. More importantly, the proposed interval algorithm is approved to be convenient to fuse additional location-related information.

Funder

National Natural Science Foundation of China

Wuxi Taihu Talent Project

Key Research and Development Project of Shandong Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3