Abstract
In this work, we investigated the effect of the tungsten nitride (WNx) diffusion barrier layer on the resistive switching operation of the aluminum nitride (AlN) based conductive bridge random access memory. The WNx barrier layer limits the diffusion of Cu ions in the AlN switching layer, hence controlling the formation of metallic conductive filament in the host layer. The device operated at a very low operating voltage with a Vset of 0.6 V and a Vreset of 0.4 V. The spatial and temporal switching variability were reduced significantly by inserting a barrier layer. The worst-case coefficient of variations (σ/µ) for HRS and LRS are 33% and 18%, respectively, when barrier layer devices are deployed, compared to 167% and 33% when the barrier layer is not present. With a barrier layer, the device exhibits data retention behavior for more than 104 s at 120 °C, whereas without a barrier layer, the device fails after 103 s. The device demonstrated synaptic behavior with long-term potentiation/depression (LTP/LTD) for 30 epochs by stimulating with a train of identical optimized pulses of 1 µs duration.
Funder
Ministry of Science and Technology of the People's Republic of China
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献