LRSE-Net: Lightweight Residual Squeeze-and-Excitation Network for Stenosis Detection in X-ray Coronary Angiography

Author:

Ovalle-Magallanes EmmanuelORCID,Avina-Cervantes Juan GabrielORCID,Cruz-Aceves IvanORCID,Ruiz-Pinales JoseORCID

Abstract

Coronary heart disease is the primary cause of death worldwide. Among these, ischemic heart disease and stroke are the most common diseases induced by coronary stenosis. This study presents a Lightweight Residual Squeeze-and-Excitation Network (LRSE-Net) for stenosis classification in X-ray Coronary Angiography images. The proposed model employs redundant kernel deletion and tensor decomposition by Depthwise Separable Convolutions to reduce the model parameters up to 48.6 x concerning a Vanilla Residual Squeeze-and-Excitation Network. Furthermore, the reduction ratios of each Squeeze-and-Excitation module are optimized individually to improve the feature recalibration. Experimental results for Stenosis Detection on the publicly available Deep Stenosis Detection Dataset and Angiographic Dataset demonstrate that the proposed LRSE-Net achieves the best Accuracy—0.9549/0.9543, Sensitivity—0.6320/0.8792, Precision—0.5991/0.8944, and F1-score—0.6103/0.8944, as well as competitive Specificity of 0.9620/0.9733.

Funder

University of Guanajuato CIIC

Mexican Council of Science and Technology CONACyT

Mexican National Council of Science and Technology

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference39 articles.

1. Cardiovascular Diseases (CVDs). 2022.

2. Coronary Heart Disease. 2022.

3. National Heart, Lung, and Blood Institute. Atherosclerosis. 2022.

4. Diagnostic Performance of Stress Cardiac Magnetic Resonance Imaging in the Detection of Coronary Artery Disease: A Meta-Analysis;Nandalur;J. Am. Coll. Cardiol.,2007

5. Athanasiou, L.S., Fotiadis, D.I., and Michalis, L.K. Atherosclerotic Plaque Characterization Methods Based on Coronary Imaging, 2017.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3