Anomalous Behavior Detection Based on the Isolation Forest Model with Multiple Perspective Business Processes

Author:

Fang NaORCID,Fang XianwenORCID,Lu Ke

Abstract

Anomalous behavior detection in business processes inspects abnormal situations, such as errors and missing values in system execution records, to facilitate safe system operation. Since anomaly information hinders the insightful investigation of event logs, many approaches have contributed to anomaly detection in either the business process domain or the data mining domain. However, most of them ignore the impact brought by the interaction between activities and their related attributes. Based on this, a method is constructed to integrate the consistency degree of multi-perspective log features and use it in an isolation forest model for anomaly detection. First, a reference model is captured from the event logs using process discovery. After that, the similarity between behaviors is analyzed based on the neighborhood distance between the logs and the reference model, and the data flow similarity is measured based on the matching relationship of the process activity attributes. Then, the integration consistency measure is constructed. Based on this, the composite log feature vectors are produced by combining the activity sequences and attribute sequences in the event logs and are fed to the isolation forest model for training. Subsequently, anomaly scores are calculated and anomalous behavior is determined based on different threshold-setting strategies. Finally, the proposed algorithm is implemented using the Scikit-learn framework and evaluated in real logs regarding anomalous behavior recognition rate and model quality improvement. The experimental results show that the algorithm can detect abnormal behaviors in event logs and improve the model quality.

Funder

National Natural Science Foundation of China

Key Research and Development Program of Anhui Province

Leading Backbone Talent Project in Anhui Province, China

Open Project Program of the Key Laboratory of Embedded System and Service Computing of Ministry of Education

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3