Intelligent Intrusion Detection Using Arithmetic Optimization Enabled Density Based Clustering with Deep Learning

Author:

Alrowais FadwaORCID,Marzouk RadwaORCID,Nour Mohamed K.,Mohsen HebaORCID,Hilal Anwer Mustafa,Yaseen Ishfaq,Alsaid Mohamed Ibrahim,Mohammed Gouse Pasha

Abstract

Rapid advancements in the internet and communication domains have led to a massive rise in the network size and the equivalent data. Consequently, several new attacks have been created and pose several challenging issues for network security. In addition, the intrusions can launch several attacks and can be handled by the use of intrusion detection system (IDS). Though several IDS models are available in the literature, there is still a need to improve the detection rate and decrease the false alarm rate. The recent developments of machine learning (ML) and deep learning (DL)-based IDS systems are being deployed as possible solutions for effective intrusion detection. In this work, we propose an arithmetic optimization-enabled density-based clustering with deep learning (AOEDBC-DL) model for intelligent intrusion detection. The presented AOEDBC-DL technique follows a data clustering process to handle the massive quantity of network data traffic. To accomplish this, the AOEDBC-DL technique applied a density-based clustering technique and the initial set of clusters are initialized using the arithmetic optimization algorithm (AOA). In order to recognize and classify intrusions, a bidirectional long short term memory (BiLSTM) mechanism was exploited in this study. Eventually, the AOA was applied as a hyperparameter tuning procedure of the BiLSTM model. The experimental result analysis of the AOEDBC-DL algorithm was tested using benchmark IDS datasets. Extensive comparison studies highlighted the enhancements of the AOEDBC-DL technique over other existing approaches.

Funder

Princess Nourah bint Abdulrahman University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3