Automated Context-Aware Vulnerability Risk Management for Patch Prioritization

Author:

Ahmadi Mehri VidaORCID,Arlos PatrikORCID,Casalicchio EmilianoORCID

Abstract

The information-security landscape continuously evolves by discovering new vulnerabilities daily and sophisticated exploit tools. Vulnerability risk management (VRM) is the most crucial cyber defense to eliminate attack surfaces in IT environments. VRM is a cyclical practice of identifying, classifying, evaluating, and remediating vulnerabilities. The evaluation stage of VRM is neither automated nor cost-effective, as it demands great manual administrative efforts to prioritize the patch. Therefore, there is an urgent need to improve the VRM procedure by automating the entire VRM cycle in the context of a given organization. The authors propose automated context-aware VRM (ACVRM), to address the above challenges. This study defines the criteria to consider in the evaluation stage of ACVRM to prioritize the patching. Moreover, patch prioritization is customized in an organization’s context by allowing the organization to select the vulnerability management mode and weigh the selected criteria. Specifically, this study considers four vulnerability evaluation cases: (i) evaluation criteria are weighted homogeneously; (ii) attack complexity and availability are not considered important criteria; (iii) the security score is the only important criteria considered; and (iv) criteria are weighted based on the organization’s risk appetite. The result verifies the proposed solution’s efficiency compared with the Rudder vulnerability management tool (CVE-plugin). While Rudder produces a ranking independent from the scenario, ACVRM can sort vulnerabilities according to the organization’s criteria and context. Moreover, while Rudder randomly sorts vulnerabilities with the same patch score, ACVRM sorts them according to their age, giving a higher security score to older publicly known vulnerabilities.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference45 articles.

1. Top Routinely Exploited Vulnerabilities. 2022.

2. Costs and Consequences of Gaps in Vulnerability Response. 2022.

3. Available online: https://www.skyboxsecurity.com/resource-library/?resource_search=&resource_type[]=report. Vulnerability and Threat Trends Report 2021, 2022.

4. Open Vulnerability Assessment Scanner (OpenVAS). 2022.

5. Nessus Vulnerability Scanner. 2022.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Automated Patch Management: An Empirical Evaluation Study;2023 IEEE International Conference on Cyber Security and Resilience (CSR);2023-07-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3