Design of VGSOT-MTJ-Based Logic Locking for High-Speed Digital Circuits

Author:

Divyanshu DivyanshuORCID,Kumar RajatORCID,Khan DanialORCID,Amara Selma,Massoud Yehia

Abstract

Emerging spintronics devices in recent research have received much interest in various fields. Their unique physical aspects are being explored to keep Moore’s law alive. Therefore, the hardware security aspects of system-on-a-chip (SoC) designs using spintronics devices becomes important. Magnetic tunnel junctions (MTJ) are a potential candidate in spintronics-based devices for beyond-CMOS applications. This work uses voltage-gated spin-orbit torque-assisted magnetic tunnel junction (VGSOT-MTJ) based on the Verilog-A behavioral model to design a possible logic-locking system for hardware security. Compared with the SOT MTJ, which uses a heavy metal strip below the MTJ stack, VGSOT-MTJ has an antiferromagnetic (AFM) strip that utilizes the voltage-controlled magnetic anisotropy (VCMA) effect to significantly reduce the JSOT,critical. To design the logic-locking block, we performed a Monte Carlo analysis to account for the effect of process variation (PV) on critical MTJ parameters. Eye diagram tests and mask designing were performed, which included the effect of thermal noise and PV for high-speed digital circuit operations. Finally, transient performance was analyzed to demonstrate the VGSOT-MTJ’s ability to design logic-locking blocks from the circuit operation perspective.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference35 articles.

1. An Overview of Hardware Security and Trust: Threats, Countermeasures, and Design Tools;Hu;IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst.,2021

2. Keynote: A Disquisition on Logic Locking;Chakraborty;IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst.,2020

3. All-Spin Logic Device With Inbuilt Nonreciprocity;Srinivasan;IEEE Trans. Magn.,2011

4. Emerging Spintronics Phenomena and Applications;Mishra;IEEE Trans. Magn.,2021

5. Spintronics and Security: Prospects, Vulnerabilities, Attack Models, and Preventions;Ghosh;Proc. IEEE,2016

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3