Switching Trackers for Effective Sensor Fusion in Advanced Driver Assistance Systems

Author:

Deo AnkurORCID,Palade VasileORCID

Abstract

Modern cars utilise Advanced Driver Assistance Systems (ADAS) in several ways. In ADAS, the use of multiple sensors to gauge the environment surrounding the ego-vehicle offers numerous advantages, as fusing information from more than one sensor helps to provide highly reliable and error-free data. The fused data is typically then fed to a tracker algorithm, which helps to reduce noise and compensate for situations when received sensor data is temporarily absent or spurious, or to counter the offhand false positives and negatives. The performances of these constituent algorithms vary vastly under different scenarios. In this paper, we focus on the variation in the performance of tracker algorithms in sensor fusion due to the alteration in external conditions in different scenarios, and on the methods for countering that variation. We introduce a sensor fusion architecture, where the tracking algorithm is spontaneously switched to achieve the utmost performance under all scenarios. By employing a Real-time Traffic Density Estimation (RTDE) technique, we may understand whether the ego-vehicle is currently in dense or sparse traffic conditions. A highly dense traffic (or congested traffic) condition would mean that external circumstances are non-linear; similarly, sparse traffic conditions would mean that the probability of linear external conditions would be higher. We also employ a Traffic Sign Recognition (TSR) algorithm, which is able to monitor for construction zones, junctions, schools, and pedestrian crossings, thereby identifying areas which have a high probability of spontaneous, on-road occurrences. Based on the results received from the RTDE and TSR algorithms, we construct a logic which switches the tracker of the fusion architecture between an Extended Kalman Filter (for linear external scenarios) and an Unscented Kalman Filter (for non-linear scenarios). This ensures that the fusion model always uses the tracker that is best suited for its current needs, thereby yielding consistent accuracy across multiple external scenarios, compared to the fusion models that employ a fixed single tracker.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3