MFFRand: Semantic Segmentation of Point Clouds Based on Multi-Scale Feature Fusion and Multi-Loss Supervision

Author:

Miao ZhiqingORCID,Song ShaojingORCID,Tang Pan,Chen JianORCID,Hu Jinyan,Gong Yumei

Abstract

With the application of the random sampling method in the down-sampling of point clouds data, the processing speed of point clouds has been greatly improved. However, the utilization of semantic information is still insufficient. To address this problem, we propose a point cloud semantic segmentation network called MFFRand (Multi-Scale Feature Fusion Based on RandLA-Net). Based on RandLA-Net, a multi-scale feature fusion module is developed, which is stacked by encoder-decoders with different depths. The feature maps extracted by the multi-scale feature fusion module are continuously concatenated and fused. Furthermore, for the network to be trained better, the multi-loss supervision module is proposed, which could strengthen the control of the training process of the local structure by adding sub-losses in the end of different decoder structures. Moreover, the trained MFFRand network could be connected to the inference network by different decoder terminals separately, which could achieve the inference of different depths of the network. Compared to RandLA-Net, MFFRand has improved mIoU on both S3DIS and Semantic3D datasets, reaching 71.1% and 74.8%, respectively. Extensive experimental results on the point cloud dataset demonstrate the effectiveness of our method.

Funder

Shanghai Intelligent Manufacturing Collaborative Logistics Equipment Engineering Technology Research Center

Collaborative Innovation Platform of Electronic Information Master of Shanghai Polytechnic University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3