An Improved Hierarchical Clustering Algorithm Based on the Idea of Population Reproduction and Fusion

Author:

Yin Lifeng,Li Menglin,Chen Huayue,Deng Wu

Abstract

Aiming to resolve the problems of the traditional hierarchical clustering algorithm that cannot find clusters with uneven density, requires a large amount of calculation, and has low efficiency, this paper proposes an improved hierarchical clustering algorithm (referred to as PRI-MFC) based on the idea of population reproduction and fusion. It is divided into two stages: fuzzy pre-clustering and Jaccard fusion clustering. In the fuzzy pre-clustering stage, it determines the center point, uses the product of the neighborhood radius eps and the dispersion degree fog as the benchmark to divide the data, uses the Euclidean distance to determine the similarity of the two data points, and uses the membership grade to record the information of the common points in each cluster. In the Jaccard fusion clustering stage, the clusters with common points are the clusters to be fused, and the clusters whose Jaccard similarity coefficient between the clusters to be fused is greater than the fusion parameter jac are fused. The common points of the clusters whose Jaccard similarity coefficient between clusters is less than the fusion parameter jac are divided into the cluster with the largest membership grade. A variety of experiments are designed from multiple perspectives on artificial datasets and real datasets to demonstrate the superiority of the PRI-MFC algorithm in terms of clustering effect, clustering quality, and time consumption. Experiments are carried out on Chinese household financial survey data, and the clustering results that conform to the actual situation of Chinese households are obtained, which shows the practicability of this algorithm.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3