A Novel Fuzzy Logic-Based Scheme for Malicious Node Eviction in a Vehicular Ad Hoc Network

Author:

Igried Bashar,Alsarhan AyoubORCID,Al-Khawaldeh Igried,AL-Qerem AhmadORCID,Aldweesh AmjadORCID

Abstract

Securing communication in vehicular ad hoc networks (VANETs) is hampered by numerous constraints, making it more difficult. First, traditional security schemes cannot be directly applied in VANET because they consider fixed topology. Second, VANET enables dynamic spectrum access where nodes constantly change frequencies due to their high degree of mobility, resulting in severe consequences on network performance. Third, an effective security scheme in VANET needs local and continual knowledge of nodes. Last, the presence of malicious nodes and their misbehaving activities impair the safety of the drivers since they might alter the content of the sent safety alerts. With these constraints in mind, this paper presents a unique security strategy that utilizes node behaviour during message exchange as a security metric to address these issues. Through the message alert exchange phase, node behaviour is measured through the fuzzy logic framework to generate a rank for each node called trust level (BL), which describes the node’s reliability in exchanging safety messages correctly. Moreover, all messages in VANET are encrypted using the existing cryptography techniques. The proposed scheme is developed to enhance communication security in VANET, minimize the effects of malicious nodes, and improve resource utilization in VANET. Evaluation of the proposed scheme shows that it improves the performance of VANET in terms of end-to-end delay, packet delivery ratio, and packet loss ratio. According to the results, our scheme improves throughput by up to 23% and reduces end-to-end delay by up to 60%.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fuzzy logic‐based trusted routing protocol using vehicular cloud networks for smart cities;Expert Systems;2024-02-27

2. Secure Data Transmission Using Trust Based Multi Objective Gazelle Optimization Algorithm for VLC-VANET;2023 3rd International Conference on Mobile Networks and Wireless Communications (ICMNWC);2023-12-04

3. Enhancing Phishing URL Detection: A Comparative Study of Machine Learning Algorithms;Proceedings of the 2023 Asia Conference on Artificial Intelligence, Machine Learning and Robotics;2023-09-15

4. Efficient Scanning Activity Detection in IoT Networks Using Ensemble Learning;Proceedings of the 2023 Asia Conference on Artificial Intelligence, Machine Learning and Robotics;2023-09-15

5. Machine learning based novel frameworks developments and architectures for secured communication in VANETs for smart transportation;Soft Computing;2023-05-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3