A Secure and Efficient Method to Protect Communications and Energy Consumption in IoT Wireless Sensor Networks

Author:

Hussein Safwan MawloodORCID,López Ramos Juan Antonio,Ashir Abubakar MuhammadORCID

Abstract

The rapid growth of technology has resulted in the deployment of a large number of interconnected devices, resulting in a wide range of new societal services. Wireless sensor networks (WSNs) are a promising technology which is faced with the challenges of operating a large number of sensor nodes, information gathering, data transmission, and providing a means to act in different scenarios such as monitoring, surveillance, forest fire detection, and many others from the civil to military spectrum. The deployment scenario, the nature of the sensor-equipped nodes, and their communication methods make this architecture extremely vulnerable to attacks, tampering, and manipulation than conventional networks. Therefore, an optimal solution to ensure security in such networks which captures the major constraints of the network in terms of energy utilization, secured data transmission, bandwidth, and memory fingerprint to process data is required. This work proposes a fast, reliable, and secure method of key distribution and management that can be used to ensure the integrity of wireless sensor networks’ communications. Moreover, with regards to efficient energy utilization, an improvement of the Low Energy Adaptive Clustering Hierarchy (LEACH) algorithm (a cluster routing protocol that is mainly used in WSN) has been proposed to enhance the networks’ energy efficiency, simplicity, and load-balancing features. Therefore, in this paper, we propose a combination of a distributed key exchange and management methods based on elliptic curve cryptography to ensure security of node communication and an improved routing protocol based on the LEACH protocol to demonstrate better performance in parameters such as network lifespan, dead nodes, and energy consumption.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3