Abstract
In recent years, the strategy of co-designing Hardware/Software (HW/SW) systems has been widely adopted to exploit the synergy between both approaches thanks to technological advances that have led to more powerful devices providing an increasingly better cost–benefit trade-off. This paper presents an HW/SW system for the detection of multiple circles in digital images based on a genetic algorithm. It is implemented on an Ultra96-v2 development board, which contains a Xilinx Zynq UltraScale+ MPSoC device and supports a Linux operating system that facilitates application development. The design is powered by developing an interactive computing environment by means of the Jupyter Notebook platform, in which different programming languages coexist. The specific advantages of each of these languages have been used to describe the hardware component that accelerates the evolutionary computation for circle detection (VHDL), to execute SW-HW interaction functions, as well as the pre- and post-processing of the images (ANSI-C) and to code, evaluate, and document the system execution process (Python). As a result, a computationally efficient application was obtained, with high accuracy in the detection of circles in synthetic and real images, and with a high degree of reconfigurability that provides the user with the necessary tools to incorporate it in a specific area of interest.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Hardware Software Co-design of k-means Clustering Algorithm;2023 9th International Conference on Signal Processing and Communication (ICSC);2023-12-21