USV Dynamic Accurate Obstacle Avoidance Based on Improved Velocity Obstacle Method

Author:

Wang Jia,Wang Rongtao,Lu Daohua,Zhou Hao,Tao Tianyi

Abstract

Unmanned surface vehicle (USV) path planning is a crucial technology for achieving USV autonomous navigation. Under global path planning, dynamic local obstacle avoidance has become the primary focus for safe USV navigation. In this study, a USV autonomous dynamic obstacle avoidance method based on the enhanced velocity obstacle method is proposed in order to achieve path replanning. Through further analysis of obstacles, the obstacle geometric model set in the conventional velocity obstacle method was redefined. A special triangular obstacle geometric model was proposed to reconstruct the velocity obstacle region. The collision time was predicted by fitting the previously gathered data to the detected obstacle’s distance, azimuth, and other relevant data. Then, it is combined with the collision risk to determine when obstacle avoidance should begin and end. In order to ensure safe driving between path points, the international maritime collision avoidance rules (COLREGs) are incorporated to ensure the accuracy of obstacle avoidance. Finally, through numerical simulations of various collision scenarios, it was determined that, under the assumption of ensuring a safe encounter distance, the maximum change rates of USV heading angle are optimized by 17.54%, 58.16%, and 28.63% when crossing, head-on, and overtaking, respectively. The results indicate that, by optimizing the heading angle, the enhanced velocity obstacle method can avoid the risk of ship rollover caused by an excessive heading angle during high-speed movement and achieve more accurate obstacle avoidance action in the event of a safety encounter.

Funder

Ministry of Science and Technology of the People's Republic of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference30 articles.

1. Autonomous Obstacle Avoidance Algorithm for Unmanned Surface Vehicles Based on an Improved Velocity Obstacle Method

2. Research on Real-Time Path Planning System of Unmanned Surface Vehicle;Sun;Master’s Thesis,2016

3. An extended potential field approach for mobile robot sensor-based motions;Khatib;Proceedings of the Intelligent Autonomous Systems (IAS-4),1995

4. Research on Dynamic Path Planning Based on the Fusion Algorithm of Improved Ant Colony Optimization and Dynamic Window Method

5. Real-Time Obstacle Avoidance for Manipulators and Mobile Robots

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3