Abstract
We investigated optimal implementation strategies for industrial inspection systems aiming to detect cracks on ground steel billets’ surfaces by combining state-of-the-art AI-based methods and classical computational imaging techniques. In 2D texture images, the interesting patterns of surface irregularities are often surrounded by visual clutter, which is to be ignored, e.g., grinding patterns. Even neural networks struggle to reliably distinguish between actual surface disruptions and irrelevant background patterns. Consequently, the image acquisition procedure already has to be optimised to the specific application. In our case, we use photometric stereo (PS) imaging to generate 3D surface models of steel billets using multiple illumination units. However, we demonstrate that the neural networks, especially in high-speed scenarios, still suffer from recognition deficiencies when using raw photometric stereo camera data, and are unable to generalise to new billets and image acquisition conditions. Only the additional application of adequate state-of-the-art image processing algorithms guarantees the best results in both aspects. The neural networks benefit when appropriate image acquisition methods together with image processing algorithms emphasise relevant surface structures and reduce overall pattern variation. Our proposed combined strategy shows a 9.25% better detection rate on validation data and is 14.7% better on test data, displaying the best generalisation.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Multi-scale and attention training of uncalibrated photometric stereo networks;International Conference on Computer Graphics, Artificial Intelligence, and Data Processing (ICCAID 2023);2024-03-27