Industry-Fit AI Usage for Crack Detection in Ground Steel

Author:

Soukup DanielORCID,Kapeller ChristianORCID,Raml BernhardORCID,Ruisz Johannes

Abstract

We investigated optimal implementation strategies for industrial inspection systems aiming to detect cracks on ground steel billets’ surfaces by combining state-of-the-art AI-based methods and classical computational imaging techniques. In 2D texture images, the interesting patterns of surface irregularities are often surrounded by visual clutter, which is to be ignored, e.g., grinding patterns. Even neural networks struggle to reliably distinguish between actual surface disruptions and irrelevant background patterns. Consequently, the image acquisition procedure already has to be optimised to the specific application. In our case, we use photometric stereo (PS) imaging to generate 3D surface models of steel billets using multiple illumination units. However, we demonstrate that the neural networks, especially in high-speed scenarios, still suffer from recognition deficiencies when using raw photometric stereo camera data, and are unable to generalise to new billets and image acquisition conditions. Only the additional application of adequate state-of-the-art image processing algorithms guarantees the best results in both aspects. The neural networks benefit when appropriate image acquisition methods together with image processing algorithms emphasise relevant surface structures and reduce overall pattern variation. Our proposed combined strategy shows a 9.25% better detection rate on validation data and is 14.7% better on test data, displaying the best generalisation.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference31 articles.

1. Modeling of residual stress distribution in D2 steel via grinding dynamics using a second-order damping system

2. The Impact of Quality Control Scrap and Rework Reduction on Energy Use;Otis;Proceedings of the Thirty-Seventh Industrial Energy Technology Conference,2015

3. Energy Economics in Multistage Manufacturing Systems With Quality Control: A Modeling and Improvement Approach

4. White Paper on Artificial Intelligence: A European Approach to Excellence and Trust;European Commission,2020

5. A survey of automation-enabled human-in-the-loop systems for infrastructure visual inspection

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multi-scale and attention training of uncalibrated photometric stereo networks;International Conference on Computer Graphics, Artificial Intelligence, and Data Processing (ICCAID 2023);2024-03-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3