Defect Synthesis Using Latent Mapping Adversarial Network for Automated Visual Inspection

Author:

Song SeunghwanORCID,Chang Kyuchang,Yun Kio,Jun Changdong,Baek Jun-GeolORCID

Abstract

In Industry 4.0, internet of things (IoT) technologies are expanding and advanced smart factories are currently being developed. To build an automated visual inspection (AVI) and achieve smartization of steel manufacturing, detecting defects in products in real-time and accurately diagnosing the quality of products are essential elements. As in various manufacturing industries, the steel manufacturing process presents a class imbalance problem for products. For example, fewer defect images are available than normal images. This study developed a new image synthesis methodology for the steel manufacturing industry called a latent mapping adversarial network. Inspired by the style-based generative adversarial network (StyleGAN) structure, we constructed a mapping network for the latent space, which made it possible to compose defect images of various sizes. We discovered the most suitable loss function, and optimized the proposed method in terms of convergence and computational cost. The experimental results demonstrate the competitive performance of the proposed model compared to the traditional models in terms of classification accuracy of 92.42% and F-score of 93.15%. Consequently, the problem of data imbalance is solved, and higher productivity in steel products is expected.

Funder

National Research Foundation of Korea

Samsung Electronics Co., Ltd.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Survey on Surface Defect Inspection Based on Generative Models in Manufacturing;Applied Sciences;2024-08-02

2. Digital-Twin-Based Monitoring System for Slab Production Process;Future Internet;2024-02-13

3. Systematic review of class imbalance problems in manufacturing;Journal of Manufacturing Systems;2023-12

4. Comparative Effectiveness of Data Augmentation Using Traditional Approaches versus StyleGANs in Automated Sewer Defect Detection;Journal of Water Resources Planning and Management;2023-09

5. Generative Adversarial Networks;Advances in Systems Analysis, Software Engineering, and High Performance Computing;2023-06-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3