Towards Low-Cost Classification for Novel Fine-Grained Datasets

Author:

Anwar Abbas,Anwar HafeezORCID,Anwar Saeed

Abstract

Fine-grained categorization is an essential field in classification, a subfield of object recognition that aims to differentiate subordinate classes. Fine-grained image classification concentrates on distinguishing between similar, hard-to-differentiate types or species, for example, flowers, birds, or specific animals such as dogs or cats, and identifying airplane makes or models. An important step towards fine-grained classification is the acquisition of datasets and baselines; hence, we propose a holistic system and two novel datasets, including reef fish and butterflies, for fine-grained classification. The butterflies and fish can be imaged at various locations in the image plane; thus, causing image variations due to translation, rotation, and deformation in multiple directions can induce variations, and depending on the image acquisition device’s position, scales can be different. We evaluate the traditional algorithms based on quantized rotation and scale-invariant local image features and the convolutional neural networks (CNN) using their pre-trained models to extract features. The comprehensive evaluation shows that the CNN features calculated using the pre-trained models outperform the rest of the image representations. The proposed system can prove instrumental for various purposes, such as education, conservation, and scientific research. The codes, models, and dataset are publicly available.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference46 articles.

1. Does the DNA barcoding gap exist? – a case study in blue butterflies (Lepidoptera: Lycaenidae)

2. Geometrid Moths of the World: A Catalogue;Scoble,1999

3. Coral Reef Fishes: Indo-Pacific and Caribbean;Lieske,2001

4. The effects of environmental pollutants on complex fish behaviour: Integrating behavioural and physiological indicators of toxicity;Melvin;Aquat. Toxicol.,2004

5. Learning to Segment;Borenstein;Proceedings of the European Conference on Computer Vision,2004

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3