A Modified LZW Algorithm Based on a Character String Parallel Search in Cluster-Based Telemetry Data Compression

Author:

He Yigen,Shi XuesenORCID,Wang Yongqing

Abstract

The volume of telemetry data is gradually increasing, both because of the increasingly larger number of parameters involved, and the use of higher sampling frequencies. Efficient data compression schemes are therefore needed in space telemetry systems to improve transmission efficiency and reduce the burden of required spacecraft resources, in particular regarding their transmitter power. In our primary study, a D-CLU algorithm was proposed to perform lossless compression for telemetry data, and achieve better performance. However, a limitation of this algorithm is that the compression time may become longer when the clustering head (CH) and outlier (which are compressed by LZW algorithm) numbers increase. To reduce compression delay, this paper proposed a modified character string (MCS) parallel search strategy for LZW algorithm (denoted by MCS-based LZW). The proposed MCS-based LZW algorithm designs coding principle, dictionary update rule and search strategy according to the character string matching results. Example verification and simulation results show that the proposed algorithm can effectively decrease the dictionary search times, and thus reduce the compression time.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference16 articles.

1. The Sardinia Radio Telescope Upgrade to Telemetry, Tracking and Command: Beam Squint and Electromagnetic Compatibility Design

2. Study on Threats to Security of Space TT&C Systems;Wang,2013

3. Lossless Compression of Aerospace Telemetry Data for a Narrow-Band Downlink;Beglaryan;Ph.D. Thesis,2014

4. A lossless compression algorithm for vibration data of space systems;Abraham;Proceedings of the International Conference on Next Generation Intelligent Systems,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3