A Study on Secret Key Rate in Wideband Rice Channel

Author:

Del Prete SimoneORCID,Fuschini FrancoORCID,Barbiroli MarinaORCID

Abstract

Standard cryptography is expected to poorly fit IoT applications and services, as IoT devices can hardly cope with the computational complexity often required to run encryption algorithms. In this framework, physical layer security is often claimed as an effective solution to enforce secrecy in IoT systems. It relies on wireless channel characteristics to provide a mechanism for secure communications, with or even without cryptography. Among the different possibilities, an interesting solution aims at exploiting the random-like nature of the wireless channel to let the legitimate users agree on a secret key, simultaneously limiting the eavesdropping threat thanks to the spatial decorrelation properties of the wireless channel. The actual reliability of the channel-based key generation process depends on several parameters, as the actual correlation between the channel samples gathered by the users and the noise always affecting the wireless communications. The sensitivity of the key generation process can be expressed by the secrecy key rate, which represents the maximum number of secret bits that can be achieved from each channel observation. In this work, the secrecy key rate value is computed by means of simulations carried out under different working conditions in order to investigate the impact of major channel parameters on the SKR values. In contrast to previous works, the secrecy key rate is computed under a line-of-sight wireless channel and considering different correlation levels between the legitimate users and the eavesdropper.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3