Hemerocallis citrina Baroni Maturity Detection Method Integrating Lightweight Neural Network and Dual Attention Mechanism

Author:

Zhang LiangORCID,Wu Ligang,Liu Yaqing

Abstract

North of Shanxi, Datong Yunzhou District is the base for the cultivation of Hemerocallis citrina Baroni, which is the main production and marketing product driving the local economy. Hemerocallis citrina Baroni and other crops’ picking rules are different: the picking cycle is shorter, the frequency is higher, and the picking conditions are harsh. Therefore, in order to reduce the difficulty and workload of picking Hemerocallis citrina Baroni, this paper proposes the GGSC YOLOv5 algorithm, a Hemerocallis citrina Baroni maturity detection method integrating a lightweight neural network and dual attention mechanism, based on a deep learning algorithm. First, Ghost Conv is used to decrease the model complexity and reduce the network layers, number of parameters, and Flops. Subsequently, combining the Ghost Bottleneck micro residual module to reduce the GPU utilization and compress the model size, feature extraction is achieved in a lightweight way. At last, the dual attention mechanism of Squeeze-and-Excitation (SE) and the Convolutional Block Attention Module (CBAM) is introduced to change the tendency of feature extraction and improve detection precision. The experimental results show that the improved GGSC YOLOv5 algorithm reduced the number of parameters and Flops by 63.58% and 68.95%, respectively, and reduced the number of network layers by about 33.12% in terms of model structure. In the case of hardware consumption, GPU utilization is reduced by 44.69%, and the model size was compressed by 63.43%. The detection precision is up to 84.9%, which is an improvement of about 2.55%, and the real-time detection speed increased from 64.16 FPS to 96.96 FPS, an improvement of about 51.13%.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3