Rapid and Accurate Diagnosis of COVID-19 Cases from Chest X-ray Images through an Optimized Features Extraction Approach

Author:

Kumar K. G. Satheesh,Venkatesan ArunachalamORCID,Selvaraj DeepikaORCID,Raj Alex Noel JosephORCID

Abstract

The mutants of novel coronavirus (COVID-19 or SARS-Cov-2) are spreading with different variants across the globe, affecting human health and the economy. Rapid detection and providing timely treatment for the COVID-19 infected is the greater challenge. For fast and cost-effective detection, artificial intelligence (AI) can perform a key role in enhancing chest X-ray images and classifying them as infected/non-infected. However, AI needs huge datasets to train and detect the COVID-19 infection, which may impact the overall system speed. Therefore, Deep Neural Network (DNN) is preferred over standard AI models to speed up the classification with a set of features from the datasets. Further, to have accurate feature extraction, an algorithm that combines Zernike Moment Feature (ZMF) and Gray Level Co-occurrence Matrix Feature (GF) is proposed and implemented. The proposed algorithm uses 36 Zernike Moment features with variance and contrast textures. This helps to detect the COVID-19 infection accurately. Finally, the Region Blocking (RB) approach with an optimum sub-image size (32 × 32) is employed to improve the processing speed up to 2.6 times per image. The performance of this implementation presents an accuracy (A) of 93.4%, sensitivity (Se) of 72.4%, specificity (Sp) of 95%, precision (Pr) of 74.9% and F1-score (F1) of 72.3%. These metrics illustrate that the proposed model can identify the COVID-19 infection with a lesser dataset and improved accuracy up to 1.3 times than state-of-the-art existing models.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3