Abstract
Conditions for electron runaway in a gas diode with a blade cathode providing a strongly inhomogeneous distribution of the electric field in the interelectrode gap have been studied theoretically. It has been demonstrated that the character of electron runaway differs qualitatively for cathodes with a different rounding radius of the edges. In the case of a relatively large edge radius (tens of microns or more), the conditions for the transition of electrons to the runaway mode are local in nature: they are determined by the field distribution in the immediate vicinity of the cathode where the electrons originate from. Here, the relative contribution of the braking force acting on electrons in a dense gas reaches a maximum. This behavior is generally similar to the behavior of electrons in a uniform field. For a cathode with a highly sharpened edge, the relative contribution of the braking force is maximum in the near-anode region. As a consequence, the runaway condition acquires a nonlocal character: it is determined by the electron dynamics in the entire interelectrode gap.
Funder
Russian Foundation for Basic Research
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献