Effect of Sensors Sensitivity on Lithium-Ion Battery Modeled Parameters and State of Charge: A Comparative Study

Author:

Ali Muhammad UmairORCID,Zafar AmadORCID,Nengroo Sarvar HussainORCID,Hussain SadamORCID,Kim Hee-Je

Abstract

The accurate estimation of the state of charge (SOC) is usually acknowledged as one of the essential features in designing of battery management system (BMS) for the lithium-ion batteries (LIBs) in electric vehicles (EVs). A suitable battery model is a prerequisite for correct SOC measurement. In this work, the first and second order RC autoregressive exogenous (ARX) battery models are adopted to check the influence of voltage and current transducer measurement uncertainty. The Lagrange multiplier method is used to estimate the battery parameters. The sensitivity analysis is performed under the following conditions: Current sensor precision of ±5 mA, ±50 mA, ±100 mA, and ±500 mA and voltage sensor precision of ±1 mV, ±2.5 mV, ±5 mV, and ±10mV. The comparative analysis of both models under the perturbed environment has been carried out. The effects of the sensor’s sensitivity on the different battery structures and complexity are also analyzed. Results shows that the voltage and current sensor sensitivity has a significant influence on SOC estimation. This research outcome assists the researcher in selecting the optimal value of sensor accuracy to accurately estimate the SOC of the LIB.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference37 articles.

1. Sustainable transportation based on electric vehicle concepts: a brief overview

2. Technology Roadmap: Electric and Plug-In Hybrid. Electric Vehicles;Tanaka,2011

3. Battery electric vehicles, hydrogen fuel cells and biofuels. Which will be the winner?

4. Semiactive Hybrid Energy Management System: A Solution for Electric Wheelchairs

5. Electricity Storage and Renewables: Costs and Markets to 2030;Ralon,2017

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3