Abstract
The development and implementation of continuous-wave (CW) or pulsed lasers has become essential in all areas of science and engineering. In the case of pulsed lasers, their emission period is commonly set up by the length of the laser cavity, which implies that it is necessary to replace the whole laser or modify the cavity to change the repetition rate. On the other hand, microcontrollers, capable of performing specific tasks saving size, cost and power consumption, have proven to be a powerful tool for various applications. To the best of our knowledge, we present a novel pulsed laser based on a very low-cost commercial microcontroller and a continuous-wave laser diode, where the pulse width and period are adjustable through a graphical user interface (GUI); besides, a new temporal asynchronous regime consisting of periodic packets of multiple pulses is produced. Pulses from 8 to 60 ms duration and with periods from 0.25 to 5 s are presented. These long optical pulses can be useful in certain applications where conventional pulses cannot be used due to their inadequate pulse width or period or intensity, such as simulating the neuronal activity of the brain or the development of neuromorphic hardware, where the response times are in the order of ms.
Funder
Universidad de Guanajuato
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献