Automatic Scene Recognition through Acoustic Classification for Behavioral Robotics

Author:

Aziz SumairORCID,Awais MuhammadORCID,Akram TallhaORCID,Khan UmarORCID,Alhussein Musaed,Aurangzeb KhursheedORCID

Abstract

Classification of complex acoustic scenes under real time scenarios is an active domain which has engaged several researchers lately form the machine learning community. A variety of techniques have been proposed for acoustic patterns or scene classification including natural soundscapes such as rain/thunder, and urban soundscapes such as restaurants/streets, etc. In this work, we present a framework for automatic acoustic classification for behavioral robotics. Motivated by several texture classification algorithms used in computer vision, a modified feature descriptor for sound is proposed which incorporates a combination of 1-D local ternary patterns (1D-LTP) and baseline method Mel-frequency cepstral coefficients (MFCC). The extracted feature vector is later classified using a multi-class support vector machine (SVM), which is selected as a base classifier. The proposed method is validated on two standard benchmark datasets i.e., DCASE and RWCP and achieves accuracies of 97.38 % and 94.10 % , respectively. A comparative analysis demonstrates that the proposed scheme performs exceptionally well compared to other feature descriptors.

Funder

Deanship of Scientific Research, King Saud University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Acoustic scene classification: A comprehensive survey;Expert Systems with Applications;2024-03

2. Recent Advances in PCG Signal Analysis using AI: A Review;International Journal on Smart Sensing and Intelligent Systems;2024-01-01

3. Is Someone There or Is That the TV? Detecting Social Presence Using Sound;ACM Transactions on Human-Robot Interaction;2023-12-13

4. Cepstral and acoustic ternary pattern based hybrid feature extraction approach for end-to-end bangla speech recognition;Journal of Ambient Intelligence and Humanized Computing;2023-10-09

5. Marine Mammals Classification using Acoustic Binary Patterns;Archives of Acoustics;2023-07-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3