Forecasting Heating Consumption in Buildings: A Scalable Full-Stack Distributed Engine

Author:

Acquaviva Andrea,Apiletti Daniele,Attanasio Antonio,Baralis Elena,Bottaccioli Lorenzo,Cerquitelli Tania,Chiusano SilviaORCID,Macii Enrico,Patti

Abstract

Predicting power demand of building heating systems is a challenging task due to the high variability of their energy profiles. Power demand is characterized by different heating cycles including sequences of various transient and steady-state phases. To effectively perform the predictive task by exploiting the huge amount of fine-grained energy-related data collected through Internet of Things (IoT) devices, innovative and scalable solutions should be devised. This paper presents PHi-CiB, a scalable full-stack distributed engine, addressing all tasks from energy-related data collection, to their integration, storage, analysis, and modeling. Heterogeneous data measurements (e.g., power consumption in buildings, meteorological conditions) are collected through multiple hardware (e.g., IoT devices) and software (e.g., web services) entities. Such data are integrated and analyzed to predict the average power demand of each building for different time horizons. First, the transient and steady-state phases characterizing the heating cycle of each building are automatically identified; then the power-level forecasting is performed for each phase. To this aim, PHi-CiB relies on a pipeline of three algorithms: the Exponentially Weighted Moving Average, the Multivariate Adaptive Regression Spline, and the Linear Regression with Stochastic Gradient Descent. PHi-CiB’s current implementation exploits Apache Spark and MongoDB and supports parallel and scalable processing and analytical tasks. Experimental results, performed on energy-related data collected in a real-world system show the effectiveness of PHi-CiB in predicting heating power consumption of buildings with a limited prediction error and an optimal horizontal scalability.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference55 articles.

1. Adoption of the Paris Agreementhttp://unfccc.int/resource/docs/2015/cop21/eng/l09r01.pdf

2. Energyhttps://unhabitat.org/urban-themes/energy/

3. Directive 2010/31/EU of the European Parliament and of the Council of 19 May 2010 on the Energy Performance of Buildings,2010

4. Energy big data: A survey

5. Cyber Physical System and Big Data enabled energy efficient machining optimisation

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3