Rotating Object Detection for Cranes in Transmission Line Scenarios

Author:

Xia Lingzhi1,Cao Songyuan2,Cheng Yang1,Niu Lei1,Zhang Jun3,Bao Hua3

Affiliation:

1. State Grid Anhui Electric Power Research Institute, Hefei 230022, China

2. State Grid Anhui Electric Power Co., Ltd., Hefei 230022, China

3. School of Artificial Intelligence, Anhui University, 111 Jiulong Road, Hefei 230601, China

Abstract

Cranes are pivotal heavy equipment used in the construction of transmission line scenarios. Accurately identifying these cranes and monitoring their status is pressing. The rapid development of computer vision brings new ideas to solve these challenges. Since cranes have a high aspect ratio, conventional horizontal bounding boxes contain a large number of redundant objects, which deteriorates the accuracy of object detection. In this study, we use a rotating target detection paradigm to detect cranes. We propose the YOLOv8-Crane model, where YOLOv8 serves as a detection network for rotating targets, and we incorporate Transformers in the backbone to improve global context modeling. The Kullback–Leibler divergence (KLD) with excellent scale invariance is used as a loss function to measure the distance between predicted and true distribution. Finally, we validate the superiority of YOLOv8-Crane on 1405 real-scene data collected by ourselves. Our approach demonstrates a significant improvement in crane detection and offers a new solution for enhancing safety monitoring.

Funder

provincial natural science foundation of Anhui

Natural Science Research Project of Anhui Provincial Education Department

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference34 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3