Imitation Learning-Based Energy Management Algorithm: Lille Catholic University Smart Grid Demonstrator Case Study

Author:

Swibki Taheni1,Ben Salem Ines1ORCID,Kraiem Youssef2,Abbes Dhaker2,El Amraoui Lilia1

Affiliation:

1. Research Laboratory Smart Electricity and Information and Communications Technologies, SEICT, LR18ES44, National Engineering School of Carthage, University of Carthage Charguia II, Charguia II Tunis-Carthage 2035, Tunisia

2. Arts et Metiers Institute of Technology, University of Lille, Centrale Lille, Junia, ULR 2697-L2EP, F-59000 Lille, France

Abstract

This paper proposes a novel energy management approach (imitation-Q-learning) based on imitation learning (IL) and reinforcement learning (RL). The proposed approach reinforces a decision-making agent based on a modified Q-learning algorithm to mimic an expert demonstration to solve a microgrid (MG) energy management problem. Those demonstrations are derived from solving a set of linear programming (LP) problems. Consequently, the imitation-Q-learning algorithm learns by interacting with the MG simulator and imitating the LP demonstrations to make decisions in real time that minimize the MG energy costs without prior knowledge of uncertainties related to photovoltaic (PV) production, load consumption, and electricity prices. A real-scale MG at the Lille Catholic University in France was used as a case study to conduct experiments. The proposed approach was compared to the expert performances, which are the LP algorithm and the conventional Q-learning algorithm in different test scenarios. It was approximately 80 times faster than conventional Q-learning and achieved the same performance as LP. In order to test the robustness of the proposed approach, a PV inverter crush and load shedding were also simulated. Preliminary results show the effectiveness of the proposed method.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3