A Service Recommendation System Based on Dynamic User Groups and Reinforcement Learning

Author:

Zhang En1ORCID,Ma Wenming1ORCID,Zhang Jinkai1ORCID,Xia Xuchen1ORCID

Affiliation:

1. School of Computer and Control Engineering, Yantai University, Yantai 264005, China

Abstract

Recently, advancements in machine-learning technology have enabled platforms such as short video applications and e-commerce websites to accurately predict user behavior and cater to their interests. However, the limited nature of user data may compromise the accuracy of these recommendation systems. To address personalized recommendation challenges and adapt to changes in user preferences, reinforcement-learning algorithms have been developed. These algorithms strike a balance between exploring new items and exploiting existing ones, thereby enhancing recommendation accuracy. Nevertheless, the cold-start problem and data sparsity continue to impede the development of these recommendation systems. Hence, we proposed a joint-training algorithm that combined deep reinforcement learning with dynamic user groups. The goal was to capture user preferences for precise recommendations while addressing the challenges of data sparsity and cold-start. We used embedding layers to capture representations and make decisions before the reinforcement-learning process, executing this approach cyclically. Through this method, we dynamically obtained more accurate user and item representations and provide precise recommendations. Additionally, to address data sparsity, we introduced a dynamic user grouping algorithm that collectively enhanced the recommendations using group parameters. We evaluated our model using movie-rating and e-commerce datasets. As compared to other baseline algorithms, our algorithm not only improved recommendation accuracy but also enhanced diversity by uncovering recommendations across more categories.

Funder

National Nature Science Foundation of China

Shandong Provincial Nature Science Foundation, China

Youth Innovation Science and Technology Support Program of Shandong Provincial

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3