Single-Instruction-Multiple-Data Instruction-Set-Based Heat Ranking Optimization for Massive Network Flow

Author:

Tan Lingling1ORCID,Wang Yongyue2,Yi Junkai1ORCID,Yang Fei1

Affiliation:

1. Institute of Automation, Beijing Information Science and Technology University, Beijing 100192, China

2. Jiangsu Shuguang Optoelectric Co., Ltd., Yangzhou 225100, China

Abstract

In order to cope with the massive scale of traffic and reduce the memory overhead of traffic statistics, the traffic statistics method based on the Sketch algorithm has become a research hotspot for traffic statistics. This paper studies the problem of the top-k flow statistics based on the Sketch algorithm and proposes a method to estimate the flow heat from massive network traffic using the Sketch algorithm and identify the kth flow with the highest heat by using a bitonic sort algorithm. In view of the performance difficulties of applying multiple hash functions in the implementation of the Sketch algorithm, the Single-Instruction-Multiple-Data (SIMD) instruction set is adopted to improve the performance of the Sketch algorithm so that SIMD instructions can process multiple fragments of data in a single step, implement multiple hash operations at the same time, compare and sort multiple flow tables at the same time. Thus, the throughput of the execution task is improved. Firstly, the elements of data flow are described and stored in the form of vectors, while the construction, analysis, and operation of data vectors are realized by SIMD instructions. Secondly, the multi-hash operation is simplified into a single vector operation, which reduces the CPU computing resource consumption of the Sketch algorithm. At the same time, the SIMD instruction set is used to optimize the parallel comparison operation of the flow table in a bitonic sort algorithm. Finally, the SIMD instruction set is used to optimize the functions in the Sketch algorithm and top-k sorting algorithm program, and the optimized code is tested and analyzed. The experimental results show that the time consumed by the advanced vector extensions (AVX)-instructions-optimized version has a significant reduction compared to the original version. When the length of KEY is 96 bytes, the instructions consumed by multiple hash functions account for less in the entire Sketch algorithm, and the time consumed by the optimized version of AVX is about 67.2% of that in the original version. As the length of KEY gradually increases to 256 bytes, the time consumed by the optimized version of AVX decreases to 53.8% of the original version. The simulation results show that the AVX optimization algorithm is effective in improving the measurement efficiency of network flow.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3