Author:
Wu Zike,Pan Pan,Liu Jieqiang,Shi Beibei,Yan Ming,Zhang Hongguang
Abstract
The reduction of the effects of heat-stress phenomena on poultry health and energy conservation of poultry farm monitoring networks are highly related problems. To address these problems, we propose environmental perception Q-learning (EPQL) to prolong the lifetime of poultry farm monitoring networks. EPQL consists of an environmental-perception module and Q-learning. According to the temperature and humidity model of heat stress, an environmental-perception module determines the transmission rate, while Q-learning adjusts the transmission rate according to the success rate of packet transmission and the remaining energy. In real-world tests, our poultry farm monitoring networks used only about 8% of energy in a month. The real-time information of these monitoring networks was available on smartphones. In laboratory tests, compared with CSMA/CA (23.67 days), S-MAC (109.37 days), and T-MAC (252.79 days) under real systems with 2000 mAh battery, the battery-life performance of EPQL (436.48 days) was better. Moreover, EPQL reduces the packet loss rate by about 60% while simultaneously decreasing the average delay by about 20%. Generally, based on the framework of EPQL, the implemented temperature and humidity model of heat stress for poultry could be replaced by other models to extend its applicability range.
Funder
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献