Proposal for a Localization System for an IoT Ecosystem

Author:

Machaj JurajORCID,Brida PeterORCID,Matuska SlavomirORCID

Abstract

In the last decade, positioning using wireless signals has gained a lot of attention since it could open new opportunities for service providers. Localization is important, especially in indoor environments, where the widely used global navigation satellite systems (GNSS) signals suffer from high signal attenuation and multipath propagation, resulting in poor accuracy or a loss of positioning service. Moreover, in an Internet of things (IoT) environment, the implementation of GNSS receivers into devices may result in higher demands on battery capacity, as well as increased cost of the hardware itself. Therefore, alternative localization systems that are based on wireless signals for the communication of IoT devices are gaining a lot of attention. In this paper, we provide a design of an IoT localization system, which consists of multiple localization modules that can be utilized for the positioning of IoT devices that are connected thru various wireless technologies. The proposed system can currently perform localization based on received signals from LoRaWAN, ZigBee, Wi-Fi, UWB and cellular technologies. The implemented pedestrian dead reckoning algorithm can process the data measured by a mobile device that is equipped with inertial sensors to construct a radio map and thus help with the deployment of the positioning services based on a fingerprinting approach.

Funder

Slovak VEGA grant agency

European Regional Development Fund

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Performance of CSI and RSS in Indoor Localization;2024 47th International Conference on Telecommunications and Signal Processing (TSP);2024-07-10

2. Analysis of electromagnetic wave propagation inside a room with two field sources;PRZEGLĄD ELEKTROTECHNICZNY;2023-04-07

3. Localization System Architecture for Enhanced Positioning in Industry 4.0 Applications;2023 International Conference on Computing, Networking and Communications (ICNC);2023-02-20

4. Characterization of AGV Localization System in Industrial Scenarios Using UWB Technology;IEEE Transactions on Instrumentation and Measurement;2023

5. RSS-Based Wireless LAN Indoor Localization and Tracking Using Deep Architectures;Big Data and Cognitive Computing;2022-08-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3