Sw/Hw Partitioning and Scheduling on Region-Based Dynamic Partial Reconfigurable System-on-Chip

Author:

Tang Qi,Guo Biao,Wang Zhe

Abstract

A heterogeneous system-on-chip (SoC) integrates multiple types of processors on the same chip. It has great advantages in many aspects, such as processing capacity, size, weight, cost, power, and energy consumption, which result in it being widely adopted in many fields. The SoC based on region-based dynamic partial reconfigurable (DPR) FPGA plays an important role in the SoC field. However, delivering its powerful capacity to the consumer depends on the efficient Sw/Hw partitioning and scheduling technology that determines the resource volume of the DPR region, the mapping of the application to the DPR region and other processors, and the schedule of the task and its reconfiguration. This paper first proposes an exact approach based on the mixed integer linear programming (MILP) for the Sw/Hw partitioning and scheduling problem. The proposed MILP is able to solve the problem optimally; however, its scalability is poor, despite that we carefully designed its formulation and tried to make it as concise as possible. Therefore, a multi-step hybrid method that combines graph partitioning and MILP is proposed, which is able to reduce the time complexity significantly with the solution quality being degraded marginally. A set of experiments is carried out using a set of real-life applications, and the result demonstrates the effectiveness of the proposed methods.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3