Multiple Feature Dependency Detection for Deep Learning Technology—Smart Pet Surveillance System Implementation

Author:

Tsai Ming-Fong,Lin Pei-Ching,Huang Zi-HaoORCID,Lin Cheng-Hsun

Abstract

Image identification, machine learning and deep learning technologies have been applied in various fields. However, the application of image identification currently focuses on object detection and identification in order to determine a single momentary picture. This paper not only proposes multiple feature dependency detection to identify key parts of pets (mouth and tail) but also combines the meaning of the pet’s bark (growl and cry) to identify the pet’s mood and state. Therefore, it is necessary to consider changes of pet hair and ages. To this end, we add an automatic optimization identification module subsystem to respond to changes of pet hair and ages in real time. After successfully identifying images of featured parts each time, our system captures images of the identified featured parts and stores them as effective samples for subsequent training and improving the identification ability of the system. When the identification result is transmitted to the owner each time, the owner can get the current mood and state of the pet in real time. According to the experimental results, our system can use a faster R-CNN model to improve 27.47%, 68.17% and 26.23% accuracy of traditional image identification in the mood of happy, angry and sad respectively.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3