Abstract
As technologies for image processing, image enhancement can provide more effective information for later data mining and image compression can reduce storage space. In this paper, a smart enhancement scheme during decompression, which combined a novel two-dimensional F-shift (TDFS) transformation and a non-standard two-dimensional wavelet transform (NSTW), is proposed. During the decompression, the first coefficient s00 of the wavelet synopsis was used to adaptively adjust the global gray level of the reconstructed image. Next, the contrast-limited adaptive histogram equalization (CLAHE) was used to achieve the enhancement effect. To avoid a blocking effect, CLAHE was used when the synopsis was decompressed to the second-to-last level. At this time, we only enhanced the low-frequency component and did not change the high-frequency component. Lastly, we used CLAHE again after the image reconstruction. Through experiments, the effectiveness of our scheme was verified. Compared with the existing methods, the compression properties were preserved and the image details and contrast could also be enhanced. The experimental results showed that the image contrast, information entropy, and average gradient were greatly improved compared with the existing methods.
Funder
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献