Framework of IoT Services over Unidirectional Visible Lights Communication Networks

Author:

Kim So-YongORCID,Kim Cheol-MinORCID,Koh Seok-JooORCID

Abstract

Visible Light Communication (VLC) has been noted as an emerging technology for communications in wireless local area networks. VLC provides some distinctive features over the conventional wireless access technologies, such as Wi-Fi, Bluetooth, or ZigBee. The most prominent feature of VLC is that it can provide more exact location information, since it is based on a particular light. In addition, VLC can reduce the frequency interferences from numerous wireless channels, since it uses a completely different radio frequency channel from the conventional wireless access technologies. Thus, VLC can be used for Internet-of-Things (IoT) services. Nevertheless, up to now, not enough studies on how to provide IoT services over VLC networks have been conducted. In this paper, we propose a framework to provide IoT services in VLC networks. In particular, we will consider the unidirectional VLC network, in which the downlink channel from the VLC transmitter to the VLC receiver is given by using VLC communication, whereas the uplink channel from the VLC receiver to the VLC transmitter is implemented by using another wireless access technology, such as Wi-Fi. This is because most of the VLC receivers, such as mobile phones, cannot support the uplink VLC communication. Based on the framework of IoT services over unidirectional VLC, in this paper, we also propose the VLC–IoT protocol (VIP) which is an application layer protocol for data transport with the session management functionality that can be used to effectively provide IoT services among IoT servers, VLC transmitters and VLC receivers in the networks. The proposed VIP protocol is implemented by using the Cooja simulator. For performance analysis, the proposed scheme is compared with the existing CoAP-based scheme that does not provide the session management. From a variety of simulation experiments, we see that the proposed scheme can provide lower data transmission and handover delays, compared to the existing scheme.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference21 articles.

1. IEEE Standard for Information Technology Telecommunications and Information Exchange between Systems Local and Metropolitan Area Networks Specific Requirements-Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications,2016

2. IEEE Standard for Telecommunications and Information Exchange Between Systems-LAN/MAN-Specific Requirements-Part 15: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Wireless Personal Area Networks (WPANs),2002

3. A Survey on Near Field Communication (NFC) Technology

4. IEEE Standard for Local and metropolitan area networks—Part 15.4: Low-Rate Wireless Personal Area Networks (LR-WPANs),2011

5. IEEE Standard for Local and metropolitan area networks--Part 15.7: Short-Range Optical Wireless Communications,2019

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3