A Survey of Multi-Task Deep Reinforcement Learning

Author:

Vithayathil Varghese NelsonORCID,Mahmoud Qusay H.ORCID

Abstract

Driven by the recent technological advancements within the field of artificial intelligence research, deep learning has emerged as a promising representation learning technique across all of the machine learning classes, especially within the reinforcement learning arena. This new direction has given rise to the evolution of a new technological domain named deep reinforcement learning, which combines the representational learning power of deep learning with existing reinforcement learning methods. Undoubtedly, the inception of deep reinforcement learning has played a vital role in optimizing the performance of reinforcement learning-based intelligent agents with model-free based approaches. Although these methods could improve the performance of agents to a greater extent, they were mainly limited to systems that adopted reinforcement learning algorithms focused on learning a single task. At the same moment, the aforementioned approach was found to be relatively data-inefficient, particularly when reinforcement learning agents needed to interact with more complex and rich data environments. This is primarily due to the limited applicability of deep reinforcement learning algorithms to many scenarios across related tasks from the same environment. The objective of this paper is to survey the research challenges associated with multi-tasking within the deep reinforcement arena and present the state-of-the-art approaches by comparing and contrasting recent solutions, namely DISTRAL (DIStill & TRAnsfer Learning), IMPALA(Importance Weighted Actor-Learner Architecture) and PopArt that aim to address core challenges such as scalability, distraction dilemma, partial observability, catastrophic forgetting and negative knowledge transfer.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference55 articles.

1. Generalization in reinforcement learning: Successful examples using sparse coarse coding;Sutton,1996

2. Q-learning

3. Playing atari with deep reinforcement learning;Mnih;arXiv,2013

Cited by 84 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Is Reinforcement Learning Good at American Option Valuation?;Algorithms;2024-09-07

2. Multi-task Support Vector Machine Classifier with Generalized Huber Loss;Journal of Classification;2024-08-23

3. Overview of Generative AI Techniques for Cybersecurity;Advances in Information Security, Privacy, and Ethics;2024-07-26

4. Transferable aircraft trajectory prediction with generative deep imitation learning;International Journal of Data Science and Analytics;2024-06-10

5. When Multitask Learning Meets Partial Supervision: A Computer Vision Review;Proceedings of the IEEE;2024-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3