Optimal Charging and Discharging Strategies for Electric Cars in PV-BESS-Based Marina Energy Systems

Author:

Jozwiak Dawid1ORCID,Pillai Jayakrishnan Radhakrishna1,Ponnaganti Pavani1ORCID,Bak-Jensen Birgitte1,Jantzen Jan23

Affiliation:

1. AAU Energy, Aalborg University, 9220 Aalborg, Denmark

2. Samsø Energy Academy, 8305 Samsø, Denmark

3. Department of Financial and Management Engineering, University of the Aegean, 82100 Chios, Greece

Abstract

The emerging concept of integrated community energy systems (ICESs) proves its suitability for improving the operation of local grids—increasing self-consumption from local generation, enhancing the load factor, and reducing energy cost. In Ballen marina—located on the Danish island of Samsø—the battery energy storage system (BESS)’s action can be possibly complemented by the flexibility of boats and electric cars. With the greater involvement of energy consumers, the energy system’s performance may become more efficient—from both technical and economic perspectives. Within this framework, the optimal charging and discharging strategies of the marina’s electric cars were developed and evaluated. The car usage profile was generated, utilising a stochastic approach to resemble daily variations in the driving pattern. The optimal charging strategy was established, subsequently integrating this action with boat flexibility. As a future scenario, the benefits of vehicle-to-grid (V2G) technology implementation were examined, proving significant enhancements of the future marina’s grid—with increased photovoltaic (PV) generation capacity and the number of electric cars. The economic benefits of bidirectional charging were proven, with ample advantages for the marina and the rental company, leading to cost savings of up to 51.7% and minimising the energy export by 21.3%. Therefore, increasing the integration level of Ballen marina’s flexible units—electric cars and boats—was concluded to be an important goal for the coming years.

Funder

Horizon 2020

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Toward ML-Based Application for Vehicles Operation Cost Management;Lecture Notes in Mechanical Engineering;2024

2. Optimal Scheduling of Electric Vehicles in Residential Distribution Systems;2023 International Conference on Circuit Power and Computing Technologies (ICCPCT);2023-08-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3