Meteorological Variables Forecasting System Using Machine Learning and Open-Source Software

Author:

Segovia Jenny Aracely1,Toaquiza Jonathan Fernando1,Llanos Jacqueline Rosario1ORCID,Rivas David Raimundo1ORCID

Affiliation:

1. Department of Electrical and Electronic Engineering, Universidad de las Fuerzas Armadas (ESPE), Sangolquí 171103, Ecuador

Abstract

The techniques for forecasting meteorological variables are highly studied since prior knowledge of them allows for the efficient management of renewable energies, and also for other applications of science such as agriculture, health, engineering, energy, etc. In this research, the design, implementation, and comparison of forecasting models for meteorological variables have been performed using different Machine Learning techniques as part of Python open-source software. The techniques implemented include multiple linear regression, polynomial regression, random forest, decision tree, XGBoost, and multilayer perceptron neural network (MLP). To identify the best technique, the mean square error (RMSE), mean absolute percentage error (MAPE), mean absolute error (MAE), and coefficient of determination (R2) are used as evaluation metrics. The most efficient techniques depend on the variable to be forecasting, however, it is noted that for most of them, random forest and XGBoost techniques present better performance. For temperature, the best performing technique was Random Forest with an R2 of 0.8631, MAE of 0.4728 °C, MAPE of 2.73%, and RMSE of 0.6621 °C; for relative humidity, was Random Forest with an R2 of 0.8583, MAE of 2.1380RH, MAPE of 2.50% and RMSE of 2.9003 RH; for solar radiation, was Random Forest with an R2 of 0.7333, MAE of 65.8105 W/m2, and RMSE of 105.9141 W/m2; and for wind speed, was Random Forest with an R2 of 0.3660, MAE of 0.1097 m/s, and RMSE of 0.2136 m/s.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference31 articles.

1. Ayala, M.F. (2017). Analisis de la Dinamica Caoticapara la Series Temporales de Variables Meteorologicas en la Estacion Climatica de Chone, Universidad de las Fuerzas Armadas ESPE. Available online: http://repositorio.espe.edu.ec/handle/21000/13629.

2. The prediction of meteorological variables using artificial neural network;Erdil;Neural Comput. Appl.,2013

3. Monitoreo de variables meteorológicas a través de un sistema inalámbrico de adquisición de datos;Rev. Investig. Desarro. Innov.,2018

4. Inzunza, J.C. (2015). Meteorologia Descriptiva. Univ. Concepción Dep. Geofísica, 1–34. Available online: http://www2.udec.cl/~jinzunza/meteo/cap1.pdf.

5. Nonlinear dynamics of meteorological variables: Multifractality and chaotic invariants in daily records from Pastaza, Ecuador;Kalauzi;Theor. Appl. Climatol.,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3