Affiliation:
1. Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315201, China
2. Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo 315201, China
Abstract
Although the NeRF approach can achieve outstanding view synthesis, it is limited in practical use because it requires many views (hundreds) for training. With only a few input views, the Depth-DYN NeRF that we propose can accurately match the shape. First, we adopted the ip_basic depth-completion method, which can recover the complete depth map from sparse radar depth data. Then, we further designed the Depth-DYN MLP network architecture, which uses a dense depth prior to constraining the NeRF optimization and combines the depthloss to supervise the Depth-DYN MLP network. When compared to the color-only supervised-based NeRF, the Depth-DYN MLP network can better recover the geometric structure of the model and reduce the appearance of shadows. To further ensure that the depth depicted along the rays intersecting these 3D points is close to the measured depth, we dynamically modified the sample space based on the depth of each pixel point. Depth-DYN NeRF considerably outperforms depth NeRF and other sparse view versions when there are a few input views. Using only 10–20 photos to render high-quality images on the new view, our strategy was tested and confirmed on a variety of benchmark datasets. Compared with NeRF, we obtained better image quality (NeRF average at 22.47 dB vs. our 27.296 dB).
Funder
Ningbo Science and Technology Innovation 2025 Major Project
Key R&D Project of the National Emergency Management Department
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献